
Stader Labs -
MaticX

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: April 3rd, 2022 - April 26th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) POSSIBLE DENIAL OF SERVICE IN FXSTATECHILDTUN-

NEL.GETRATE FUNCTION - MEDIUM 13

Description 13

Risk Level 15

Recommendation 16

Remediation Plan 18

3.2 (HAL-02) MISSING REQUIRE STATEMENT IN SETFEEPERCENT - MEDIUM

19

Description 19

Code Location 19

Risk Level 20

Recommendation 20

Remediation Plan 20

3.3 (HAL-03) UNNEEDED INITIALIZATION OF UINT256 VARIABLES TO 0 -

INFORMATIONAL 21

Description 21

1



Code Location 21

Risk Level 21

Recommendation 21

Remediation Plan 21

3.4 (HAL-04) USING ++I CONSUMES LESS GAS THAN I++ IN LOOPS - INFOR-

MATIONAL 22

Description 22

Code Location 22

Proof of Concept 22

Risk Level 23

Recommendation 23

Remediation Plan 23

3.5 (HAL-05) PROPOSEDMANAGER STATE VARIABLE CAN BE REMOVED - INFOR-

MATIONAL 24

Description 24

Risk Level 24

Recommendation 24

Remediation Plan 24

3.6 (HAL-06) BOOLEAN EQUALITIES - INFORMATIONAL 25

Description 25

Code Location 25

Risk Level 25

Recommendation 26

Remediation Plan 26

4 AUTOMATED TESTING 27

4.1 STATIC ANALYSIS REPORT 28

Description 28

2



Slither results 28

4.2 AUTOMATED SECURITY SCAN 33

Description 33

MythX results 33

3



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 04/03/2022 Roberto Reigada

0.2 Document Updates 04/05/2022 Roberto Reigada

0.3 Draft Review 04/26/2022 Gabi Urrutia

1.0 Remediation Plan 04/28/2022 Roberto Reigada

1.1 Remediation Plan Review 04/28/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Stader Labs engaged Halborn to conduct a security audit on their MaticX

smart contracts beginning on April 3rd, 2022 and ending on April 5th,

2022. The security assessment was scoped to the smart contract provided

in the GitHub repository stader-labs/maticX.

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a

full-time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were mostly

addressed by Stader Labs team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/maticX


• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

7

EX
EC

UT
IV

E
OV

ER
VI

EW



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

- MaticX.sol

- ValidatorRegistry.sol

- FxStateChildTunnel.sol

- FxStateRootTunnel.sol

- RateProvider.sol

Commit ID 1:

- eb9f87e2ac124d999b4066a6aada78b71cf701c8

Commit ID 2:

- 8f914608ae40fdb35cfae281ff6c1dda9943b632

Commit ID 3:

- 5ac965782854874d7530203225167b230d893bce

Fixed Commit ID:

- 0c612d147cb11268d168bd4e6eac1ba6608025b4

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/maticX/tree/eb9f87e2ac124d999b4066a6aada78b71cf701c8
https://github.com/stader-labs/maticX/tree/8f914608ae40fdb35cfae281ff6c1dda9943b632
https://github.com/stader-labs/maticX/tree/5ac965782854874d7530203225167b230d893bce
https://github.com/stader-labs/maticX/tree/0c612d147cb11268d168bd4e6eac1ba6608025b4


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 0 4

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)

(HAL-03)
(HAL-04)
(HAL-05)
(HAL-06)

10

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - POSSIBLE DENIAL OF SERVICE
IN FXSTATECHILDTUNNEL.GETRATE

FUNCTION
Medium SOLVED - 04/28/2022

HAL02 - MISSING REQUIRE STATEMENT
IN SETFEEPERCENT

Medium SOLVED - 04/13/2022

HAL03 - UNNEEDED INITIALIZATION OF
UINT256 VARIABLES TO 0

Informational ACKNOWLEDGED

HAL04 - USING ++I CONSUMES LESS GAS
THAN I++ IN LOOPS

Informational SOLVED - 04/13/2022

HAL05 - PROPOSEDMANAGER STATE
VARIABLE CAN BE REMOVED

Informational SOLVED - 04/13/2022

HAL06 - BOOLEAN EQUALITIES Informational ACKNOWLEDGED

11

EX
EC

UT
IV

E
OV

ER
VI

EW



12

FINDINGS & TECH
DETAILS



3.1 (HAL-01) POSSIBLE DENIAL OF
SERVICE IN
FXSTATECHILDTUNNEL.GETRATE
FUNCTION - MEDIUM

Description:

In the MaticX contract, in the requestWithdraw() function, the following

call to IFxStateRootTunnel(fxStateRootTunnel).sendMessageToChild() is

done:

Listing 1: MaticX.sol (Lines 287-292)

225 function requestWithdraw(uint256 _amount) external override

ë whenNotPaused {

226 require(_amount > 0, "Invalid amount");

227

228 (

229 uint256 totalAmount2WithdrawInMatic ,

230 uint256 totalShares ,

231 uint256 totalPooledMatic

232 ) = convertMaticXToMatic(_amount);

233

234 _burn(msg.sender , _amount);

235

236 uint256 leftAmount2WithdrawInMatic =

ë totalAmount2WithdrawInMatic;

237 uint256 totalDelegated = getTotalStakeAcrossAllValidators ();

238

239 require(

240 totalDelegated >= totalAmount2WithdrawInMatic ,

241 "Too much to withdraw"

242 );

243

244 uint256 [] memory validators = IValidatorRegistry(

ë validatorRegistry)

245 .getValidators ();

246 uint256 preferredValidatorId = IValidatorRegistry(

ë validatorRegistry)

247 .preferredWithdrawalValidatorId ();

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



248 uint256 currentIdx = 0;

249 for (; currentIdx < validators.length; ++ currentIdx) {

250 if (preferredValidatorId == validators[currentIdx ]) break;

251 }

252

253 while (leftAmount2WithdrawInMatic > 0) {

254 uint256 validatorId = validators[currentIdx ];

255

256 address validatorShare = IStakeManager(stakeManager)

257 .getValidatorContract(validatorId);

258 (uint256 validatorBalance , ) = getTotalStake(

259 IValidatorShare(validatorShare)

260 );

261

262 uint256 amount2WithdrawFromValidator = (validatorBalance

ë <=

263 leftAmount2WithdrawInMatic)

264 ? validatorBalance

265 : leftAmount2WithdrawInMatic;

266

267 IValidatorShare(validatorShare).sellVoucher_new(

268 amount2WithdrawFromValidator ,

269 type(uint256).max

270 );

271

272 userWithdrawalRequests[msg.sender ].push(

273 WithdrawalRequest(

274 IValidatorShare(validatorShare).unbondNonces(

ë address(this)),

275 IStakeManager(stakeManager).epoch () +

276 IStakeManager(stakeManager).withdrawalDelay (),

277 validatorShare

278 )

279 );

280

281 leftAmount2WithdrawInMatic -= amount2WithdrawFromValidator

ë ;

282 currentIdx = currentIdx + 1 < validators.length

283 ? currentIdx + 1

284 : 0;

285 }

286

287 IFxStateRootTunnel(fxStateRootTunnel).sendMessageToChild(

288 abi.encode(

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



289 totalShares - _amount ,

290 totalPooledMatic - totalAmount2WithdrawInMatic

291 )

292 );

293

294 emit RequestWithdraw(msg.sender , _amount ,

ë totalAmount2WithdrawInMatic);

295 }

In case totalShares - _amount equals to 0, any calls to the

FxStateChildTunnel.getRate() function would revert as the function would

try to perform a division by 0:

Listing 2: MaticX.sol (Line 53)

42 function getReserves () public view returns (uint256 , uint256) {

43 (uint256 maticX , uint256 MATIC) = abi.decode(

44 latestData ,

45 (uint256 , uint256)

46 );

47

48 return (maticX , MATIC);

49 }

50

51 function getRate () external view returns (uint256) {

52 (uint256 maticX , uint256 matic) = getReserves ();

53 return (matic * 1 ether) / maticX;

54 }

This would cause a Denial of Service on all functions that use the

getRate() function.

Risk Level:

Likelihood - 1

Impact - 5

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to call the convertMaticToMaticX() function before the

sendMessageToChild() call. convertMaticToMaticX() now correctly handles

the edge case where MaticX’s totalSupply or totalPooledMatic is 0. For

example:

Listing 3: MaticX.sol (Lines 287-296)

225 function requestWithdraw(uint256 _amount) external override

ë whenNotPaused {

226 require(_amount > 0, "Invalid amount");

227

228 (

229 uint256 totalAmount2WithdrawInMatic ,

230 uint256 totalShares ,

231 uint256 totalPooledMatic

232 ) = convertMaticXToMatic(_amount);

233

234 _burn(msg.sender , _amount);

235

236 uint256 leftAmount2WithdrawInMatic =

ë totalAmount2WithdrawInMatic;

237 uint256 totalDelegated = getTotalStakeAcrossAllValidators ();

238

239 require(

240 totalDelegated >= totalAmount2WithdrawInMatic ,

241 "Too much to withdraw"

242 );

243

244 uint256 [] memory validators = IValidatorRegistry(

ë validatorRegistry)

245 .getValidators ();

246 uint256 preferredValidatorId = IValidatorRegistry(

ë validatorRegistry)

247 .preferredWithdrawalValidatorId ();

248 uint256 currentIdx = 0;

249 for (; currentIdx < validators.length; ++ currentIdx) {

250 if (preferredValidatorId == validators[currentIdx ]) break;

251 }

252

253 while (leftAmount2WithdrawInMatic > 0) {

254 uint256 validatorId = validators[currentIdx ];

255

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



256 address validatorShare = IStakeManager(stakeManager)

257 .getValidatorContract(validatorId);

258 (uint256 validatorBalance , ) = getTotalStake(

259 IValidatorShare(validatorShare)

260 );

261

262 uint256 amount2WithdrawFromValidator = (validatorBalance

ë <=

263 leftAmount2WithdrawInMatic)

264 ? validatorBalance

265 : leftAmount2WithdrawInMatic;

266

267 IValidatorShare(validatorShare).sellVoucher_new(

268 amount2WithdrawFromValidator ,

269 type(uint256).max

270 );

271

272 userWithdrawalRequests[msg.sender ].push(

273 WithdrawalRequest(

274 IValidatorShare(validatorShare).unbondNonces(

ë address(this)),

275 IStakeManager(stakeManager).epoch () +

276 IStakeManager(stakeManager).withdrawalDelay (),

277 validatorShare

278 )

279 );

280

281 leftAmount2WithdrawInMatic -= amount2WithdrawFromValidator

ë ;

282 currentIdx = currentIdx + 1 < validators.length

283 ? currentIdx + 1

284 : 0;

285 }

286

287 (

288 uint256 totalAmount2WithdrawInMatic ,

289 uint256 totalSharesFinal ,

290 uint256 totalPooledMaticFinal

291 ) = convertMaticXToMatic(_amount);

292 IFxStateRootTunnel(fxStateRootTunnel).sendMessageToChild(

293 abi.encode(

294 totalSharesFinal ,

295 totalPooledMaticFinal

296 )

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



297 );

298

299 emit RequestWithdraw(msg.sender , _amount ,

ë totalAmount2WithdrawInMatic);

300 }

Remediation Plan:

SOLVED: The Stader Labs team fixed the issue. The FxStateChildTunnel.

getRate() function now makes use of the convertMaticXToMatic() function

in the FxStateChildTunnel contract that handles the edge case where Matic

or MaticX is equal to 0.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.2 (HAL-02) MISSING REQUIRE
STATEMENT IN SETFEEPERCENT - MEDIUM

Description:

In the MaticX contract, the function setFeePercent() is missing a require

statement that restricts the feePercent setting to a value greater than

100. Setting feePercent to a value higher than 100 would cause users to

not they could for rewards, as it would be impossible to re-stake any

validator with rewards:

Code Location:

Listing 4: MaticX.sol (Line 629)

624 function setFeePercent(uint8 _feePercent)

625 external

626 override

627 onlyRole(DEFAULT_ADMIN_ROLE)

628 {

629 feePercent = _feePercent;

630 }

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to add the following require statement in the

setFeePercent() function.

require(_feePercent <= 100, "_feePercent must be <= 100");

Also consider limiting it to, for example, 10-20%. In this way, users

will always be sure that their rewards will be reduced by a maximum of

that amount.

Remediation Plan:

SOLVED: The Stader Labs team added the suggested require statement to the

setFeePercent() function.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.3 (HAL-03) UNNEEDED
INITIALIZATION OF UINT256 VARIABLES
TO 0 - INFORMATIONAL

Description:

uint256 variables are already initialized to 0 by default. uint256 i = 0

would reassign the 0 to i which wastes gas.

Code Location:

MaticX.sol

- Line 252: uint256 currentIdx = 0;

- Line 311: for (uint256 idx = 0; idx < validators.length; idx++){

- Line 511: uint256 amountToClaim = 0;

- Line 709: for (uint256 i = 0; i < validators.length; i++){

ValidatorRegistry.sol

- Line 119: for (uint256 idx = 0; idx < validators.length - 1; idx++){

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended not to initialize uint256 variables to 0 to save gas.

For example, use instead: for (uint256 idx; idx < validators.length; ++

idx){.

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.4 (HAL-04) USING ++I CONSUMES
LESS GAS THAN I++ IN LOOPS -
INFORMATIONAL

Description:

In the loop below, the variable i is incremented using i++. It is known

that, in loops, using ++i costs less gas per iteration than i++.

Code Location:

MaticX.sol

- Line 253: for (; currentIdx < validators.length; currentIdx++){

- Line 311: for (uint256 idx = 0; idx < validators.length; idx++){

- Line 709: for (uint256 i = 0; i < validators.length; i++){

ValidatorRegistry.sol

- Line 119: for (uint256 idx = 0; idx < validators.length - 1; idx++){

Proof of Concept:

For example, based on the following test contract:

Listing 5: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



13 }

We can see the difference in gas costs:

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of a

uint variable within a loop. This does not just apply to the iterator

variable. It also applies to increments made within the loop code block.

Remediation Plan:

SOLVED: The Stader Labs team now uses ++i in the for loops to increase

the iterator variable, reducing the gas costs.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.5 (HAL-05) PROPOSEDMANAGER STATE
VARIABLE CAN BE REMOVED -
INFORMATIONAL

Description:

In the contract MaticX, the proposed_manager state variable is declared,

but it is not used anywhere in the smart contract.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to remove the proposed_manager state variable from the

MaticX contract.

Remediation Plan:

SOLVED: The Stader Labs team removed the proposed_manager state variable.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.6 (HAL-06) BOOLEAN EQUALITIES -
INFORMATIONAL

Description:

Boolean constants can be used directly and do not need to be compared to

true or false.

Code Location:

Listing 6: ValidatorRegistry.sol (Line 262)

260 modifier whenValidatorIdExists(uint256 _validatorId) {

261 require(

262 validatorIdExists[_validatorId] == true ,

263 "Validator id doesn 't exist in our registry"

264 );

265 _;

266 }

Listing 7: ValidatorRegistry.sol (Line 277)

275 modifier whenValidatorIdDoesNotExist(uint256 _validatorId) {

276 require(

277 validatorIdExists[_validatorId] == false ,

278 "Validator id already exists in our registry"

279 );

280 _;

281 }

Risk Level:

Likelihood - 1

Impact - 1

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to remove the equality to the boolean constant, for

example:

Listing 8: ValidatorRegistry.sol (Line 262)

260 modifier whenValidatorIdExists(uint256 _validatorId) {

261 require(

262 validatorIdExists[_validatorId],

263 "Validator id doesn 't exist in our registry"

264 );

265 _;

266 }

Listing 9: ValidatorRegistry.sol (Line 277)

275 modifier whenValidatorIdDoesNotExist(uint256 _validatorId) {

276 require(

277 !validatorIdExists[_validatorId],

278 "Validator id already exists in our registry"

279 );

280 _;

281 }

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



27

AUTOMATED TESTING



4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contract in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified the

smart contract in the repository and was able to compile it correctly into

its abi and binary format, Slither was run against the contract. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

MaticX.sol

28

AU
TO

MA
TE

D
TE

ST
IN

G



29

AU
TO

MA
TE

D
TE

ST
IN

G



ValidatorRegistry.sol

30

AU
TO

MA
TE

D
TE

ST
IN

G



FxStateChildTunnel.sol

FxStateRootTunnel.sol

31

AU
TO

MA
TE

D
TE

ST
IN

G



RateProvider.sol

• No major issues found by Slither.

• The reentrancies flagged by Slither were checked individually and

they are false positives.

32

AU
TO

MA
TE

D
TE

ST
IN

G



4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the contract and sent the compiled results to the analyzers to locate

any vulnerabilities.

MythX results:

MaticX.sol

ValidatorRegistry.sol

No issues found by MythX.

FxStateChildTunnel.sol

FxStateRootTunnel.sol

33

AU
TO

MA
TE

D
TE

ST
IN

G



RateProvider.sol

• No major issues found by MythX. The requirement violations are all

false positives.

34

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results



